skip to main content


Search for: All records

Creators/Authors contains: "Miller, Debra L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hellbenders ( Cryptobranchus alleganiensis ) are large, aquatic salamanders from the eastern United States. Both subspecies, eastern and Ozark hellbenders, have experienced declines resulting in federal listing of Ozark hellbenders. The globally distributed chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been detected in both subspecies, and Batrachochytrium salamandrivorans ( Bsal ) poses a new threat if introduced into North America. Ozark hellbenders also suffer a high prevalence of toe lesions of unknown etiology, with changes in host immunocompetence hypothesized to contribute. Antimicrobial peptides (AMPs) secreted from dermal granular glands may play a role in hellbender health. We collected skin secretions from free-ranging hellbenders and enriched them for small cationic peptides used for growth inhibition assays against Bd and Bsal . Generalized linear mixed models revealed the presence of active toe lesions as the strongest and only significant predictor of decreased Bd inhibition by skin peptides. We also found skin secretions were more inhibitory of Bsal than Bd . MALDI-TOF mass spectrometry revealed candidate peptides responsible for anti-chytrid activity. Results support the hypothesis that hellbender skin secretions are important for innate immunity against chytrid pathogens, and decreased production or release of skin peptides may be linked to other sub-lethal effects of disease associated with toe lesions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract Batrachochytrium salamandrivorans ( Bsal ) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal , and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available October 1, 2024
  4. Introduction One of the most important emerging infectious diseases of amphibians is caused by the fungal pathogen Batrachochytrium salamandrivorans (Bsal) . Bsal was recently discovered and is of global concern due to its potential to cause high mortality in amphibians, especially salamander species. To date, little has been reported on the pathophysiological effects of Bsal ; however, studies of a similar fungus, B. dendrobatidis (Bd) , have shown that electrolyte losses and immunosuppression likely play a key role in morbidity and mortality associated with this disease. The goal of this study was to investigate pathophysiological effects and immune responses associated with Bsal chytridiomycosis using 49 rough-skinned newts ( Taricha granulosa ) as the model species. Methods Taricha granulosa were exposed to a 1 × 10 7 per 10 mL dose of Bsal zoospores and allowed to reach various stages of disease progression before being humanely euthanized. At the time of euthanasia, blood was collected for biochemical and hematological analyses as well as protein electrophoresis. Ten standardized body sections were histologically examined, and Bsal -induced skin lesions were counted and graded on a scale of 1–5 based on severity. Results Results indicated that electrolyte imbalances and dehydration induced by damage to the epidermis likely play a major role in the pathogenesis of Bsal chytridiomycosis in this species. Additionally, Bsal -infected, clinically diseased T. granulosa exhibited a systemic inflammatory response identified through alterations in complete blood counts and protein electrophoretograms. Discussion Overall, these results provide foundational information on the pathogenesis of this disease and highlight the differences and similarities between Bsal and Bd chytridiomycosis. 
    more » « less
  5. Abstract Purpose of Review

    Preparing for pandemics requires a degree of interdisciplinary work that is challenging under the current paradigm. This review summarizes the challenges faced by the field of pandemic science and proposes how to address them.

    Recent Findings

    The structure of current siloed systems of research organizations hinders effective interdisciplinary pandemic research. Moreover, effective pandemic preparedness requires stakeholders in public policy and health to interact and integrate new findings rapidly, relying on a robust, responsive, and productive research domain. Neither of these requirements are well supported under the current system.

    Summary

    We propose a new paradigm for pandemic preparedness wherein interdisciplinary research and close collaboration with public policy and health practitioners can improve our ability to prevent, detect, and treat pandemics through tighter integration among domains, rapid and accurate integration, and translation of science to public policy, outreach and education, and improved venues and incentives for sustainable and robust interdisciplinary work.

     
    more » « less
  6. null (Ed.)
    Batrachochytrium salamandrivorans is an emerging fungus that is causing salamander declines in Europe. We evaluated whether an invasive frog species (Cuban treefrog, Osteopilus septentrionalis) that is found in international trade could be an asymptomatic carrier when exposed to zoospore doses known to infect salamanders. We discovered that Cuban treefrogs could be infected with B. salamandrivorans and, surprisingly, that chytridiomycosis developed in animals at the two highest zoospore doses. To fulfill Koch’s postulates, we isolated B. salamandrivorans from infected frogs, exposed eastern newts (Notophthalmus viridescens) to the isolate, and verified infection and disease by histopathology. This experiment represents the first documentation of B. salamandrivorans chytridiomycosis in a frog species and substantially expands the conservation threat and possible mobilization of this pathogen in trade. 
    more » « less
  7. Wang, Chengshu (Ed.)
    Environmental temperature is a key factor driving various biological processes, including immune defenses and host-pathogen interactions. Here, we evaluated the effects of environmental temperature on the pathogenicity of the emerging fungal pathogen, Batrachochytrium salamandrivorans ( Bsal ), using controlled laboratory experiments, and measured components of host immune defense to identify regulating mechanisms. We found that adult and juvenile Notophthalmus viridescens died faster due to Bsal chytridiomycosis at 14°C than at 6 and 22°C. Pathogen replication rates, total available proteins on the skin, and microbiome composition likely drove these relationships. Temperature-dependent skin microbiome composition in our laboratory experiments matched seasonal trends in wild N . viridescens , adding validity to these results. We also found that hydrophobic peptide production after two months post-exposure to Bsal was reduced in infected animals compared to controls, perhaps due to peptide release earlier in infection or impaired granular gland function in diseased animals. Using our temperature-dependent susceptibility results, we performed a geographic analysis that revealed N . viridescens populations in the northeastern United States and southeastern Canada are at greatest risk for Bsal invasion, which shifted risk north compared to previous assessments. Our results indicate that environmental temperature will play a key role in the epidemiology of Bsal and provide evidence that temperature manipulations may be a viable disease management strategy. 
    more » « less
  8. null (Ed.)
  9. Turner, Wendy C. (Ed.)